yln
yln
圣骑士
圣骑士
  • 粉丝3
  • 关注4
  • 发帖数107
阅读:93回复:0

半导体EDA产业深度研究报告:国产EDA迎黄金时代(上篇)(上)

楼主#
更多 发布于:2021-08-26 13:57

一、EDA 是电子设计的基石产业


1、EDA 覆盖电子系统设计的全环节


电子设计自动化(Electronic Design Automation,EDA)技术是指包括电路系统设计、系统仿真、设计综合、PCB 版图设计和制版的一整套自动化流程。随着计算机、集成电路和电子设计技术的高速发展,EDA 技术历经计算机辅 助设计(CAD)、计算机辅助制造(CAM)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程设 计(CAE)等发展历程,已经成为电子信息产业的支柱产业。




EDA 产品线繁多,根据 EDA 工具的应用场景不同,可以将 EDA 工具分为数字设计类、模拟设计类、晶圆制造类、 封装类、系统类等五大类,其中系统类又可以细分为 PCB、平板显示设计工具、系统仿真及原型验证和 CPLD/FPGA 设计工具等。


数字设计类工具主要是面向数字芯片设计的工具,是一系列流程化点工具的集合,包括功能和指标定义、架构设计、 RTL 编辑、功能仿真、逻辑综合、静态时序仿真(Static Timing Analysis,STA)、形式验证等工具。


模拟设计类工具主要面向模拟芯片的设计工具,包括版图设计与编辑、电路仿真、版图验证、库特征提取、射频设计解决方案等产品线。


晶圆制造类工具主要是面向晶圆厂/代工厂的设计工具,该类工具主要是协助晶圆厂开发工艺并且实现器件建模和仿 真等功能,同时也是生成 PDK 的重要工具,而 PDK 又是作为晶圆厂和设计厂商的重要桥梁的作用,因此可见 EDA 工具和工艺绑定紧密,并且随着摩尔定律的推进需不断升级迭代。晶圆制造类工具包括器件建模、工艺和器件仿真 (TCAD)、PDK 开发与验证、计算光刻、掩膜版校准、掩膜版合成和良率分析等。


封装类工具主要是面向芯片封装环节的设计、仿真、验证工具,包括封装设计、封装仿真以及 SI/PI(信号完整性/电 源完整性)分析。随着芯片先进封装技术发展以及摩尔定律往前推进,封装形式走向高密度、高集成及微小化,因此 对于封装的要求和难度有较大提高,目前高性能产品需要先进的集成电路封装,如将多芯片的异质集成封装方式、基 于硅片的高密度先进封装(HDAP)、FOWLP、2.5/3DIC、SiP 和 CoWoS 等。


在系统类 EDA 领域,EDA 工具可分为 PCB 设计、平板显示设计、系统仿真工具(Emulation)、CPLD/FPGA 等可 编程器件上的电子系统设计。EDA 工程的范畴不断扩展到下游电子系统应用,如果没有 EDA 技术的支持,想完成先 进的电子系统设计机会是不可能的,反过来,生产制造技术的不断进步又必将会对 EDA 技术提出新的要求。


在系统类 EDA 中,印刷电路板(PCB)主要用作电子系统的载体,工程师通常将集成电路元器件焊接在 PCB 上完成 整个电子系统的搭建、控制、通信等功能。目前主流的 PCB 工具有 Cadence 的 Allegro、Mentor Graphics 的 Xpedition 及 Zuken 的 CR 等,国产 PCB 厂商有立创 EDA 等。


平板显示设计主要应用于面板的研发、生产和制造,国内 EDA 公司华大九天已经具备在平板显示领域全流程的工具, 并且基本覆盖国内主要的面板厂商客户。


系统仿真工具(Emulation),与传统的仿真工具(Simulation)不同,主要聚焦于系统级别的仿真,广泛应用于加速 软硬件联合开发的场景,而传统仿真更多聚焦于单一功能或者局部电路环节的仿真。西门子(Siemens)曾推出 PAVE360 自动驾驶硅前验证环境(pre-silicon autonomous validation environment),该产品主要意图在于支持和促 进创新自动驾驶汽车平台的研发。PAVE360 为下一代汽车芯片的研发提供了一个跨汽车生态系统、多供应商协作的 综合环境,该系统不仅可以实现汽车硬软件子系统、整车模型、传感器数据融合、交通流量的仿真,甚至还仿真自动 驾驶汽车最终在智能城市里面的驾驶。


复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)和现场可编程阵列(Field Programmable Gates Array,FPGA)最显著的优势在于开发周期短、投资风险小、产品上市快和硬件升级余地大等。这两类芯片 是比较特殊的芯片类型,需要与 EDA 工具协同才能工作,一般而言开发 CPLD/FPGA 的厂商都需要开发一套成熟的 EDA 下载和验证工具来实现对芯片的编程。从 CPLD/FPGA 的简要设计流程可以看出,对工程师而言,其工序相对 于传统芯片设计流程有明显减少。


按照集成电路产业链划分,集成电路 EDA 工具可以分为制造类 EDA 工具、设计类 EDA 工具及封测类 EDA 工具。 器件建模及仿真类工具就属于制造类 EDA 工具,晶圆厂(包括晶圆代工厂、IDM 制造部门等)借助器件建模及仿真、 良率分析等制造类 EDA 工具来协助其工艺平台开发,工艺平台开发阶段主要由晶圆厂主导完成,在其完成半导体器 件和制造工艺的设计后,建立半导体器件的模型并通过 PDK 或建立 IP 和标准单元库等方式提供给集成电路设计企业(包括芯片设计公司、半导体 IP 公司、IDM 设计部门等)。设计类 EDA 工具则是基于晶圆厂或代工厂提供的 PDK 或 IP 及标准单元库为芯片设计厂商提供设计服务,芯片设计厂商采用设计类 EDA 工具完成芯片的设计。封装类 EDA 工具主要是提供封装方案设计及仿真的功能,从而帮助芯片设计企业完成一颗芯片的全生命周期的设计服务。


2、EDA 本质上是电子设计方法学和设计流程的载体


何谓设计方法学?电子设计涉及到很多除了计算机工程类的 know-how,还涉及很多微电子学、物理学等诸多方法学, 并将其集成在 EDA 工具中供设计厂商使用,设计方法学主要方向是自动化、程序化、AI 化、最优化。 自动化:早期的 IC 设计手工成分比较多,比如手工布局布线等,后来随着晶体管数量越来越多、IC 设计的规模越来 越大,手工设计难度越来越高,因此出现了自动化的 EDA 工具进行辅助设计; 程序化:IC 设计是一个系统化工程,流程化清晰,因此后续也出现了控制程序化的 EDA 工具,主要来掌控整个设计 流程串联。


AI 化:数字电路的流程化更为明显,并且程序化程度较高,设计优化算法也有固定的范式,因此 EDA 工具中也引入 AI 的概念,利用 AI 算法进一步优化设计流程和范式。复杂的高性能 SoC 设计过程,有无限的设计参数可供探索,例 如模块布局,设计尺寸和形状,以及无数的 EDA 自动化工具流程和变量可以尝试,设计探索阶段对最终结果潜在影 响巨大,所以设计团队往往在这个阶段投资大量人力和机器资源,花费大部分的总体设计时程,AI 与 Machine Learning 等技术进展可以大幅加速设计探索的速度,比如Synopsys 的DSO.ai与设计实现工具内建的Machine Learnig技术, 不但能更快的达到设计目标,还能减少探索过程中需要投资的人力与机器资源。


最优化:EDA 工具最终目的是为 IC 设计业者提供最优的设计方案,具有较强竞争力的 PPA(Performance、Power、 Area)的设计结果,因此最优化是 EDA 的终极目的,EDA 的工作原理其实就是在给定约束情况下求解 IC 设计方案 的最优解的过程。


何谓设计流程?芯片设计过程不是一蹴而就,而是按照一定的工作流程和步骤进行,同时步骤之间又有所关联或者循 环优化,寻求最优解。


3、数字设计 EDA 的核心环节是逻辑综合和布局布线


数字芯片设计多采用自顶向下设计方式,可以分为五大步骤:


1)系统的行为级设计,确定芯片的功能、性能指标(包 括芯片面积、成本等);


2)结构设计,根据芯片的特点,将其划分为多个接口清晰、功能相对独立的子模块;


3)逻 辑设计,采用规则结构来实现,或者利用已验证的逻辑单元;


4)电路级设计,得到可靠的电路图;


5)将电路图转换 为物理版图。


4、模拟设计 EDA 的自动化程度低于数字设计,模拟设计更依赖经验


模拟电路是指用来对模拟信号进行传输、变换、处理、放大、测量和显示等工作的电路,主要包括放大电路、信号运 算和处理电路、振荡电路、调制和解调电路及电源电路等。模拟电路的设计流程与数字电路大体流程类似,但是所采 用的 EDA 工具有差异。


模拟和数字芯片设计流程对比方面,模拟芯片设计的自动化程度低于数字芯片设计。借用数字芯片设计的概念,模拟 芯片设计也可以分为前后端,前端设计包括电路图设计及生成,涉及大量的算法、计算以及假设验证等,从自动化程 度看,数字芯片在前端设计的自动化程度明显高于模拟芯片,主要是模拟芯片需要工程师手动选型电路拓扑并且选择 合适的元器件。后端设计方面,数字电路的后端设计基本实现了全自动化,EDA 工具的性能直接影响到芯片产品的 性能,模拟芯片后端设计的自动化程度较低,尤其在布局步骤方面。


5、平板显示 EDA 是面向面板厂商的细分领域


平板显示电路设计主要应用于面板厂商,如三星、LG、京东方、华星光电等,面板生产厂商需要采用该类设计工具 协助设计和仿真,具体流程如下:


1、原理图编辑:原理图编辑工具主要用于对平板显示电路设计的像素单元、控制单元等电路模块进行原理图设计。


2、电路仿真:实现平板显示电路的快速电路仿真。


3、物理验证:检测平板显示电路设计的 DRC/LVS 等验证要求。


4、寄生参数提取:提取平板显示电阻电容值,包括像素级电阻电容提取、触控面板电阻电容提取和液晶电容提取等。


5、可靠性分析:包括电压降分析、电迁移分析和热分析等,针对平板显示电路设计的版图特点,通过全面板热电分 析技术实现对大规模网络的电流和电压快速计算,大幅提升平板显示电路设计可靠性分析的效率。


二、后摩尔时代 EDA 需求更加强劲,国内需求快速成长


1、EDA 行业研发投入高,并购整合频发


全球 EDA 软件行业属于技术、资金、人才密集型行业。由于研发投产周期长,导致行业人才需求以及资金消耗成为 行业发展的关键因素,也体现出 EDA 软件行业的主要特征。EDA 三巨头在过去的 30 多年里,经过了超过 200 次数 的并购,形成了现如今行业内的寡头垄断地位,其中 Synopsys 的并购次数更是高达 80 次。


EDA 行业是技术密集型行业,领先技术的来源主要有两个:一是企业内部自主研发,二是兼并收购其它公司或组织 的先进技术。纵观全球 EDA 龙头企业的发展史,这两方面几乎伴随着 EDA 企业成长的每一个时段。


EDA 是一门高研发投入的生意,研发费用的大额投入才有机会带来创新的新技术,更是企业的竞争活力源泉。从 2011-2020 年来看,Synopsys 和 Cadence 两大巨头的研发费用逐年攀升,研发费用占营业收入的比例更是常年高于 30%,Cadence 的研发费用占比更是达到了约 40%,高额的研发投入保障了 EDA 的技术进步,更是 EDA 龙头保持 持续市场竞争力的关键。


寡头垄断格局的形成并非偶然,兼并收购促使三巨头业务不断集中。Synopsys、Cadence 和 Mentor Graphics 均创 立于上世纪 80 年代,三家公司通过不断地兼并收购其它公司,不断完善自己的业务和产品线,同时扩大了业务规模。 其中具有重要意义的收购是 Synopsys 于 2002 年收购了与 Cadence 结构专利诉讼的 Avanti 公司,直接衔接了 Synopsys 的前端和后端业务,使得 Synopsys 成为 EDA 历史上第一个可以提供顶级前后端完整 IC 设计方案的领先 EDA 工具供应商,至此 Synopsys 坐稳全球第二的位置,经过几年的不断发展,Synopsys 在 2008 年成功登顶全球 EDA 霸主至今。


2、集成电路产业链的重要支点,全球 EDA 市场规模稳健成长


EDA 是集成电路产业链的支点,具有重要杠杆效应。全球电子产品和半导体市场呈倒金字塔分布,顶层是数万亿美 元体量的全球电子信息市场以及数十万亿美元的数字经济市场,而底层的支点则是 70 亿美元的 EDA 产业。EDA 工 具能够帮助设计人员在复杂的 IC 设计环节中降低设计难度,减少设计偏差,提高流片的成功率。EDA 产值虽小,但 其决定了整个产业的效率以及产品的质量,具有巨大的杠杆效应。一旦 EDA 产业受到冲击,整个集成电路产业的稳 定性将会受到巨大影响。


EDA 软件的收费模式大多为“定期授权”模式,该收费模式有利于平滑行业内各厂商的营收情况,减轻下游行业波动 影响。EDA 软件通常会因半导体制程的精进、设计工艺的升级而做出相应的软件更新,每次更新后,下游 IC 设计厂 商都需要对新版本进行重新购买以获得权限,授权的有效时长约在 3 年左右。相比于按下游芯片产量收费的“版税”模 式,“定期授权”模式能够平滑 EDA 厂商的收入情况,使整个 EDA 行业保持平稳增长。根据 IC Insights 数据,2016-2020 年全球 IC 市场整体 CAGR 为 8.1%,2017 年储存器市场供不应求,DRAM 与 NAND Flash 需求大幅增长,导致该年 IC 市场增速达 24.9%;2019 年,DRAM 和 NAND Flash 销售额下滑,拖累全球半导体市场下滑 15.0%。




由于下游 IC 设计的复杂性提升,全球 EDA 市场发展逐渐提速,亚太地区增速明显。EDA 可以大大缩短产品的研发 周期,并极大提高产品性能与性价比。2020 年,随着大规模集成电路、计算机和电子系统设计技术的发展,EDA 软 件的需求增长速度明显提升,根据赛迪智库数据,2018-2020 年年,全球 EDA 市场规模分别为 62.2、65.3、72.3 亿 美元。2019 年、2020 年增速分别为 5.0%、10.7%,增速有明显提升趋势。


分地区看,各地区保持稳健增长,亚太地区增速明显。北美地区作为 EDA 软件的主要供给与使用地区,市场规模一 直保持高位。2018-2020 年,北美地区 EDA 市场规模分别为 27.4、28.1、29.6 亿美元,同比增速分别为 2.55%、5.34%; 而亚太地区受益于下游产业迁移趋势,市场规模整体增速明显,并与 2020 年超过北美地区,成为全球第一大 EDA 市场。近三年亚太地区市场规模分别为 24.2、26.1、30.1 亿美元,同比增速分别为 7.85%、16.48%,远高于其他地 区增速;欧洲地区近三年市场规模分别为 10.6、11.1、12.3 亿美元,同比增速分别为 4.72%、10.81%。


分细分领域看,EDA 各环节占比基本保持稳定,计算机辅助工程与 IP 核为 EDA 主要的销售部分。ESD Alliance 跟 踪了包括计算机辅助工程、IC 物理设计与验证、PCB 与多芯片模块,以及半导体 IP 等细分领域的销售情况。数据显 示,2020 年各个季度的销售额结构基本保持稳定,IP 核的交易为 EDA 产业交易规模最大的一部分,在 20Q4 占据着 34.7%的市场份额;其次则是计算机辅助工程,占比为 31.6%;而物理设计与验证、PCB 和 MCM 则分别占据 21.0%、 9.7%的市场份额。




与国际市场相比,我国 EDA 市场规模较小,但增长迅速。根据赛迪智库数据,2018 年,我国 EDA 市场规模为 44.9 亿元,而在 2020 年,我国 EDA 迅速增长至 66.2 亿元,CAGR 为 21.42%,高于 7.81%的全球增速。 但由于我国 EDA 厂商起步较晚,在产品性能与技术水平方面均不占有,国内市场份额大多为国外厂商所占据。2018 年,仅 Synopsys、Cadence、Siemens EDA、Ansys 等多家国外 EDA 巨头便占据了我国 84.6%的市场份额,而到 2020 年,该比值上升至 85.8%头部化趋势依旧明显。


3、半导体研发是需求驱动力,后摩尔时代 EDA 需求更加强劲


摩尔定律的不断推进以及半导体公司的研发投入带动 EDA 需求增长。过去三十年,摩尔定律驱动半导体行业不断往 前发展,单位硅片面积能够容纳的晶体管数量指数型上升,芯片设计的复杂度随之提升,因此对 EDA 工具也提出了 更高的要求。另外,随着工艺制程节点不断往前推进,芯片设计的成本大幅提升,尤其在 5nm 制程节点之后。另外, 从研发投入的角度看,我们发现全球龙头的 EDA 营收及增速与全球领先的半导体公司的研发投入的增长趋势保持较 高的相关度。




先进工艺节点极大推动 EDA 需求,以全球最大的芯片代工厂台积电为例,2020 Q4 的 5nm 和 7nm 的营业收入已经 占到了 49%,其中 20nm 及以下的 FinFET 节点更是占到了 62%,先进工艺节点的营收占比不断提升,EDA 需求随 之不断增长。


后摩尔时代技术演进驱动EDA技术应用延伸拓展。后摩尔时代的集成电路技术演进方向主要包括延续摩尔定律(More Moore)、扩展摩尔定律(More than Moore)以及超越摩尔定律(Beyond Moore)三类,主要发展目标涵盖了建立 在摩尔定律基础上的生产工艺特征尺寸的进一步微缩、以增加系统集成的多重功能为目标的芯片功能多样化发展,以 及通过三维封装(3D Package)、系统级封装(SiP)等方式实现器件功能的融合和产品的多样化。其中,面向延续 摩尔定律(More Moore)方向,单芯片的集成规模呈现爆发性增长,为 EDA 工具的设计效率提出了更高的要求。 面向扩展摩尔定律(More than Moore)方向,伴随逻辑、模拟、存储等功能被叠加到同一芯片,EDA 工具需具备对 复杂功能设计的更强支撑能力。


后摩尔时代,芯粒(Chiplet)技术已成为重要的发展方向,芯粒技术将不同工艺节点和不同材质的芯片通过先进的 集成技术(如 3D 集成技术)封装集成在一起,形成一个系统芯片,实现了一种新形式的 IP 复用。这一过程需要 EDA 工具提供全面支持,促进 EDA 技术应用的延伸拓展。


SiP 的发展,促进了 EDA 工具升级迭代需求。SiP 对 EDA 产生的影响首先是适应设计方法的改变。如何简化 SiP 的 设计过程将是推动对系统级封装(SiP)芯片技术需求的最关键能力。一个完整的设计流程与工具支持将使得产品开 发工作大幅简化,工具对未来技术的扩展性,向下兼容以及数据交换的标准化都是必要的考量点。从系统芯片(SoC) 过渡到 SiP 的设计方法,给芯片设计人员和封装设计人员都带来了新的挑战,对硅基板的布局和验证提出了新的挑战, 另外,因为小型化紧凑化,除了电性能之外,电与热的交互也需要非常完整的设计能力,包括热感知、电磁干扰设计 方法等。因此,随着封装变得越来越复杂,EDA 解决方案空间必须涵盖设计、热学、3D 解决方案和信号完整性,以 确保其全部功能良好。


SiP EDA 供应商方面,除了海外传统 EDA 巨头有较多布局外,国内厂商芯和半导体也在 SiP 领域提供封装设计的一 站式服务。芯和半导体 SiP 解决方案将具有不同功能的芯片在三维空间内进行多种形式的组合安装,混合搭载于同一 封装体之内,从而构成完整系统的封装技术。芯和半导体已与多家封装厂建立合作伙伴关系,提供:1)封装设计、 加工、验证的交钥匙方案,2)包括方案、原理图、布局、布线的全线设计,3)信号完整性、电源完整性、电磁兼容 分析,4)电热协同分析设计。同时,芯和半导体也为客户提供 IPD 集成无源器件解决方案,芯和半导体 IPD 是在硅 基板上利用晶圆代工厂的工艺,采用光刻技术蚀刻出不同图形,形成不同的器件,从而实现各种无源元件如电阻、电 容、电感、滤波器、耦合器等的高密度集成,芯和的 IPD 解决方案主要应用在手机及无线连接应用领域。


4、EDA 行业三大新趋势:EDA+云、EDA+AI、EDA+IP


(1)EDA+云计算:超强计算资源赋能 EDA 工具,降本增效


云计算的出现为 EDA 发展提供了新的方向。云计算是继互联网、计算机后在信息时代的又一重大革新,云计算是分 布式计算的一种,为更多用户享受更先进的网络资源提供了可能。云计算在应用领域的重要性不断凸显。传统的 EDA 设计流程是 Fabless 公司从 Synopsys、Cadence 或 Mentor 等 EDA 公司购买完整的工具流和 IP,用户需要自己购买EDA 工具,在终端设备上安装相应的环境及软件才能进行电路设计。EDA 上云则有望开辟全新路径,用户将不必受传统设计模式的约束,只需要为终端设备使用工具的市场来付流量费,以更加灵活的方式进行生产设计。


EDA 上云可显著降低设计流程的耗时,提高开发效率。在开发过程中,EDA 使用者常常会面临计算资源需求激增、 多项目并行导致资源抢夺以及 EDA 峰值性能需求难以被满足等困境,芯片设计流程周期本身就十分漫长,叠加算力 受限带来的影响,将会进一步影响新产品的设计周期,进而影响新产品的上市销售。EDA 上云后,能够将部分或者 全部 EDA 工具转移至云上,设计公司各取所需,灵活获取计算资源,达到规模经济性,借此亦可提升开发效率,减 少芯片设计的时间成本。


云端 EDA 有助于优化购买成本,提高资源利用率。EDA 工具大致分为前端、后端和验证三个部分,在长达约 18 个 月的芯片设计周期中,每个阶段所用到的工具种类和数量不尽相同。传统模式下,设计公司若想进行芯片设计,往往 需要购买 EDA 公司提供的完整全流程工具,特别是对于中小公司,昂贵的购买成本加重了研发负担。云端 EDA 可帮 助公司缩短周转时间,进行虚拟的设计、模拟和仿真,摆脱办公地点的限制,减少资金成本。


微软云已与 EDA 厂商联手协作,未来发展仍需不断探索。EDA 和云的结合具有三大优势,1)在性能上能够采用最 优的配置满足复杂的芯片设计场景,2)和云的融合可以带来成本的优化,3)保障芯片设计整个流程中的各环节的安 全性。微软云 Azure 优势明显,已和 Mentor Graphics、TSMC 和 AMD 等多方合作,在 Azure 上验证了 7nm 的芯片 设计。Synopsys 使用微软云 Azure 运行 IC Validator,在不到 9 小时的时间内完成了对 AMD Redeon Pro VII GPU (超过 130 亿个晶体管)的验证,大幅缩短了验证时间。Cadence 在 2018 和 2019 年分别发布了 Cadence Cloud 和 Cloudburst 平台,实现了涉足云计算到全面迈向云计算的重要步骤。


(2)EDA+AI:PPA 更优化,流程更智能化


人工智能的兴起,使 AI 将从 Indide 和 Outside 两方面赋能 EDA。机器学习(ML)作为人工智能(AI)的重要组成 部分,其在 EDA 领域的相关应用代表了 AI 与 EDA 融合的技术发展趋势。AI Inside 强调 EDA 工具本身,力图让 EDA 工具本身更加智能,使得工具使用者获得更好的 PPA(功耗、性能和面积)和更快的引擎,从而提升测试和诊断性能 表现。AI Outside 强调工具使用者,以期让工具具有学习的能力,使工具本身积累更多经验,减少设计过程中的人为 干预,让 EDA 设计者能有更多事件从事富有创造性的劳动,减少重复性的繁杂工作。


全球领先 EDA 厂商均已布局 AI,赋力 IC 设计智能化。Synopsys 在 2020 年 3 月 12 日推出了业界首个用于芯片设计的自主人工智能应用程序——DSO.ai,DSO 指设计空间优化(Design Space Optimization),这是 EDA 行业首 次将 AI 应用于非常复杂的设计任务中的产品,DSO.ai 能够在芯片设计的巨大求解空间里搜索优化目标,大规模扩展 了对芯片设计流程选项的探索,能够自主执行次要决策,并使用强化学习来观察设计随时间的演变情况,同时调整设 计选择、技术参数和工作流程,大幅提升整体生产力。


AI 助力实现高精度设计,提升设计效率。半导体制造中,随着设计尺寸的不断缩小,光的衍射效应愈发明显,因此 设计图形可能产生光学影像退化,使得光刻后的实际图形与设计不一致,光学邻近矫正(OPC:Optical Proximity Correction)技术可修正上述光学临近效应。Mentor 创新性的运用 ML OPC 将光学近邻效应修正(OPC)输出预测 精度提升到纳米级,同时执行时间还会缩短 3 倍,在此之前,对于同样的工作量,需要 4000 个 CPU 不间断地运行 24 小时。运用 ML 的 OPC 对于 CPU 内核的占用也会大幅度减少。


(3)EDA+IP:EDA 厂商提供 IP 产品具有天然优势


半导体 IP 是集成电路进步发展的产物,与 EDA 共同构成芯片设计的强大支柱。半导体 IP 是指已验证的、可重复利 用的、具有某种特定功能的集成电路模块,通常由第三方开发。在产业发展早期,由于芯片的种类有限,当时的半导 体芯片设计难度较低,大部分芯片设计公司自身可以独立完成芯片的设计全流程,所以当时几乎没有独立的 IP 厂商。


随着集成电路的发展,大规模集成电路(VLSI)逐渐占据行业主流,半导体行业遵循摩尔定律的发展,单个芯片上集 成的晶体管数量已达上亿个,半导体芯片的流程分工愈发明细,全球 IDM 厂商数量极少,芯片行业发展更趋向于分 工协作。在芯片设计环节,超大规模集成电路所涉及的流程愈发复杂,研发费用逐步升高,同时伴随着芯片种类的愈 加丰富,以及先进制程的不断涌现,半导体 IP 为简化 IC 设计流程提供了极大便利,半导体 IP 以及应运而生的 IP 企 业是半导体产业发展的必然产物,配合先进的 EDA 工具,芯片设计借助各种 IP 达到了极大的便捷。


半导体 IP 可按照存在形式以及应用领域进行分类。按照存在形式,可以将 IP 内核分为软核、硬核和固核。软核是最 原始的 IP,主要以 HDL 等硬件描述语言存在,具有灵活性和适应性,但是后续工艺可能会受限,且较易涉及知识产 权的问题。硬核主要以偏后期的版图形式存在,可预见性好,是较为成熟的板块,但是灵活性和可移植性很差。固核 是软核和硬核的折衷。从 IP 应用领域看,设计 IP 可分为处理器 IP(CPU、DSP、GPU & ISP)、有线接口 IP、物 理 IP 和其他数字 IP。


IP 市场规模稳定增长,全球供应商格局稳定,中国大陆厂商占比较低。据 IBS 数据显示,半导体 IP 市场将从 2018 年的 46 亿美元增长至 2027 年的 101 亿美元,CAGR 为 9.13%,其中处理器 IP、数模混合 IP 和射频 IP 的 CAGR 分 别为 10.15%、6.99%和 8.44%。IPnest 数据显示,2020 年的全球半导体 IP 供应商销售收入市占率前三名为 ARM、 Synopsys 和 Cadence,其市占率分别为 41.0%、19.2%和 6.0%,排名前十的企业中仅有一家中国大陆公司,芯原 股份市占率为 2.0%,侧面反映出 IP 市场国产率较低。


IP 业务主要以授权模式为主,壁垒较高,产品生态构建天然护城河,EDA 公司凭借自身产品线具有独特优势。ARM 作为 IP 行业龙头老大,IP 产品布局完善,开辟了面向“Partner-ship”授权“IP Core”的模式,不再设计芯片,而是以授 权的方式,将芯片设计方案转让给其他芯片设计公司。授权模式下,IP 与 EDA 类似,都形成了独特的产品生态,老 用户无法产生替代方案,新用户为了适应市场势必选择成熟方案,用户粘性大导致新产品难以进入市场提高市占,两 大 EDA 公司同时涉足 IP 业务,也都建立了较为完善的产品布局,借助自身产品布局优势,提升品牌护城河,同时带 来业务增量。




5、国内半导体产业蓬勃发展,国内 EDA 需求处于快速成长期


从行业发展历史看,EDA 行业发展的主要驱动力来源于半导体行业发展以及摩尔定律的不断往前推进。EDA 商业模 式本质上是服务于半导体企业的研发工作,通过销售 License、IP 和技术服务盈利,即 EDA 行业的发展受益于半导 体企业数量以及研发投入的增长。


根据中国半导体协会数据,2020 年中国半导体设计公司数量达到 2218 家,相较上年大幅增长 24.6%。从员工数量 划分看,小于 100 人的 IC 设计公司占比较高,即初创类型的公司占比较高,中国半导体行业工程师数量 20 万左右, 每个工程师带来的 EDA 需求大约在 3700 美元,相较于 2018 年两年复合增长约 8%,那么粗略测算 2020 年来自中 国半导体设计公司的 EDA 需求为 7.4 亿美元。另外中国 IP 市场规模测算方面,虽然 IP 的消耗与芯片数量紧密相关,而不是工程师的数量,但我们认为,在中国充 满活力的半导体行业,初创企业(少于 100 名员工)的迅速增长,因此芯片设计工程师数量说明 IP 的市场增长具有 一定合理性。根据中国半导体协会数据,我们假设未来五年中国半导体行业工程师数量复合增速达到 8%,单个工程 师 EDA 需求量复合增速 10%以及单个工程师 IP 需求量复合增速 10%,基于以上假设则测算出中国 EDA/IP 市场未 来五年复合增速达到 19%。


从Synopsys和Cadence国内营收看,2020年Synopsys在中国大陆的营收4.21亿美元,占其总收入比例约11.4%, Cadence 在中国大陆的营收 4.07 亿美元,占其总收入比例约 15.2%,两大巨头在国内的营收合计约 8.28 亿美元。近 年来,国内的营收在两大 EDA 巨头的营收占比不断提升,体现了国内市场对于两大 EDA 巨头的重要性,这意味着国 产 EDA 公司具有近 10 亿美元的国产替代空间。
本文源自未来智库,转载目的在于传递更多信息,版权归原作者所有。
点击查看原文
游客

返回顶部